Math 564: Advance Analysis 1
Lecture 14
Integachble tanckiones may not be bounded.
Exangle. $\left.f:=\sum_{n=0}^{\infty} \mathbb{1}_{\left(2^{-(m)}\right.}, 2^{-n}\right) \cdot(1.5)^{n}$ then $\int f d \lambda=\sum 2^{-(n+1)} \cdot(1.5)^{n}<\infty$.

99% boucledren of l^{\prime} functions. Let (X, μ) b. a measser space al $f \in l^{\prime}(X, \mu)$. For each $G_{4} 0$ there is a $\mu_{\text {cmeas. }} X^{\prime} \leq X$ s.t. $\int|f| d \mu \approx_{\varepsilon} \int_{X^{\prime}}(f) d \mu$, i.e., $\mu_{f f \mid}\left(X \backslash X^{\prime}\right) \leq \varepsilon$, acd $\left.f\right|_{x^{\prime}}$ is bdd,
Proof. Becare $|f|<a$ on a coull set, we macg assume $|f|<\infty$.
W have hat $\forall x \exists n|f| \leq n$. We would like sritch these suanti-
 $X_{n}>X_{\mu}$ so, $Y_{A}^{\prime}\left(X_{n}\right) \not \supset \mu_{i+1}^{\mu}(X)$.
Beare $j_{i+1}^{\mu}(x)=\|_{f \|_{1}}<\infty$, we get $J_{\text {If }}\left(x \backslash X_{n}\right) \leq\{$ for lafye ingh n. B) Chebyshuv, we also have $\mu(x)\left(X_{n}\right) \leq \frac{1}{n}$. $\|f\|_{1}$, heace tol lacy enongh $n, \mu\left(x \backslash X_{n}\right)<\varepsilon$.

Det. For meashers μ, ν on a measuratile spece (X, B), we say Kat ν is absolutily continoons vith respect $h o \mu$, and write $\nu \ll \mu$, if $\mu_{\text {-uall }} \Rightarrow v$-uall, i.e., if a set $B \in B$ is μ^{μ}-n.ll, then it's also ν-null.

Exangle. For any $f \in L^{+}(x, \gamma)$, we have $\mu_{f} \ll \mu$.
The uave "abrolube coatianity" wanes trom an equir. def. Do $\nu \ll \mu$ ficide melasure v.

Prope Lut ν, μ he macsures on a neasurable space (X, B) ，where ν is fiaide． Than $\nu \ll \mu$ if and ouls if $\forall \varepsilon>0 \quad \exists \delta>0$ s．t．For each $B \in B$ ， we have $\mu(B)<\delta \Rightarrow \nu(B)<\varepsilon$ ．
Proot．\Leftrightarrow Trivial．
\Rightarrow Given 4,0 ，suppose bowards a contcadiction Rat $\forall \delta>0$ 子 $B_{\delta} \in B$ s．t．$v^{\prime}\left(B_{j}\right)<\delta$ but $v\left(B_{\delta}\right) \geqslant\{$ ．By Borel－Candelli（necall doe tisst application，there a dececasing segceace $\left(B_{n}\right)$ ，f． $\mathbb{i n}_{n} B_{u}$ is μ－mull，yet $v\left(B_{a}\right) \geq \sum_{\text {．}}$ ．But $\mu_{\text {－uall }} \Rightarrow \nu$－nall， ＂so 刃心 B_{n} is also v－uall，contracticting $v\left(B_{n}\right)>v\left(\mathbb{G} B_{n}\right)=0$ ．
Cor．If $f \in l^{\prime}$ ，then $\forall \varepsilon>0 \quad \exists \delta>0$ sct．$\mu(B)<\delta \Rightarrow \int_{B}|f| d \mu<\varepsilon$ ，
for all μ ，measurable sets B ．
Proof．$\mu_{|f|}(X)=\|f\|_{1}<\infty$ ，so $\mu_{\text {if｜}} \ll \mu$ inplies the conclusior．
Convargence in measare．We saw the $f_{n} \rightarrow f$ ptriese doesn＇d alvags inply L^{\prime}－anvergence．Conversely，it is also farlse tht L^{\prime}－onvergence implies ptrise convargence．Let＇s at least show ht $f_{h} \rightarrow \overbrace{i} f$ inpdies ht $f_{u_{k}} \rightarrow f$ a．e．for sone sabsegnence．To hov this，we will inticcluse the thicd notion of covergonce and prove via this internediate stepr

Exaples（Folland）．
i．$f_{n}=n^{-1} \chi_{(0, n)}$ ．
ii．$f_{n}=\chi_{(n, n+1)}$ ．
iii．$f_{n}=n \chi_{[0,1 / n]}$ ．
iv．$f_{1}=\chi_{[0,1]}, f_{2}=\chi_{[0,1 / 2]}, f_{3}=\chi_{[1 / 2,1]}, f_{4}=\chi_{[0,1 / 4]}, f_{5}=\chi_{[1 / 4,1 / 2]}$ ， $f_{6}=\chi_{[1 / 2,3 / 4]}, f_{7}=\chi_{[3 / 4,1]}$ ，and in general，$f_{n}=\chi_{\left[j / 2^{k},(j+1) / 2^{k}\right]}$ where $n=2^{k}+j$ with $0 \leq j<2^{k}$ ．
(i) $F_{r} \rightarrow 0$ prise, in fact uniformly, hat $\int f_{n} d x=\not \nrightarrow 0$, so not in l^{\prime}.
(ii) $f_{n} \rightarrow 0$ prise, bat sot aniturnly and not in l.
(iii) far $\rightarrow 0$ a.e., but not miforaly aud not ic L '.

$\int f_{n} d \lambda \rightarrow 0$ hence in l^{\prime}, but $f_{n} \nrightarrow f$ are. blase for every x, $\left(f_{n}(x)\right)$ has ∞-many 0 d α-macy 1. But $f_{2^{k}} \rightarrow 0$ a.e.
lu (x, y) be a measure pace.
Net. For $\alpha \geq 0$ and μ-meas. ceal-valued functions f, g, define

$$
\begin{aligned}
& \Delta_{\alpha}(f, y):=\{x \in X:|f(x)-g(x)| \geq \alpha\}, \\
& \delta_{\alpha}(f, g):=\mu\left(\Delta_{\alpha}(f, g)\right) .
\end{aligned}
$$

These δ_{d} are not cen psendo-uetrics; cooled, let $f \equiv 0, g \equiv 1, h \equiv 2$, then $\delta_{2}(f, y)=\delta_{2}(g, h)=0$ but $\delta_{2}(f, h)=\mu(x)$. However His family satisfies:

Quasi- Δ-ines. (a) $\Delta_{\alpha+\beta}(f, h) \leq \Delta_{\alpha}(f, g) \cup \Delta_{\beta}(g, h)$.
(b) $\delta_{\alpha+\beta}(f, h) \leq \delta_{\alpha}(f, g)+\delta_{\beta}(g, h)$.

Prot. If $|f(x)-h(x)| \geqslant \alpha+\beta$ then either $|f(x)-g(x)| \geqslant \alpha$ or $|g(x)-h(x)| \geqslant \beta$, is the Δ-indy. for reals.

Def. o We say the a signecce $\left(f_{n}\right)$ converger ir measure to f, and vide $f_{n} \rightarrow \mu f_{1}$, if $\forall \alpha>0, \quad \delta_{\alpha}\left(f_{n}, f\right)=\mu\left(\left\{_{x} \in X:\left|f_{n}(x)-f_{n}(x)\right| \geqslant \alpha\right\}\right) \rightarrow 0$. o We say tht $\left(f_{u}\right)$ is anchy in weaserce if $\forall \alpha>0$,

$$
\delta_{\alpha}\left(f_{n}, f_{m}\right) \rightarrow 0 \text { as } n, m \rightarrow \infty .
$$

Exaples (Folland). (i) fu $\rightarrow_{\mu} 0$
(ii) $f_{n} f_{\mu} 0$
(iii) $f_{n} \rightarrow \mu 0$
(iv) $f_{\mu} \rightarrow \mu 0$
L_{1}-conv. \Rightarrow meas-conv. If $f_{n} \rightarrow f$ then $f_{n} \rightarrow \mu f$.
Pcoot. Fix $\alpha>0$. Then by Chebjshev, $\delta_{\alpha}\left(f_{u}, f\right) \leq \frac{1}{\alpha} \cdot\left\|f-f_{u}\right\|_{1} \rightarrow 0$.
Measane-convergence top is Hansdorff nod nall. If $f_{n} \rightarrow \rightarrow_{\mu} f$ and $f_{n} \rightarrow \sin _{s} g$, then $t=g$ a.e. Proof. $F_{i x} \alpha>0$. It's engen to show $\delta_{\alpha}(f, g)=0$. By quasi- Δ-ines:

$$
\delta_{\alpha}(f, g) \leq \delta_{d / 2}(f, f u)+\delta_{d / 2}\left(f_{u}, g\right)^{\alpha} \rightarrow 0 \text {, as } u \rightarrow \infty \text {. }
$$

Pop. If $\left(f_{a}\right)$ is Cauchy in weaske ad $\left(f_{h_{k}}\right) \rightarrow_{j} f$ for sone inbsegaence, then $f_{u} \rightarrow_{\mu} F$ in measure.
Proot. Again by quasi-a-iney., HIW.
Thus. If $f_{u} \rightarrow \mu f$ in measure (e.g. when $f_{a} \rightarrow L_{L^{\prime}} f$), Hure is a subeegence $\left(f_{a_{k}}\right)$ that couverges to f a.e.

