Math 564: Advance Analysis 1
Lecture 14
Istyrable factors and not be bandled.
Example fix
$$\sum_{n=0}^{\infty} \mathbb{1}_{\lfloor 2^{-(n+1)}, \frac{n}{2^{-n}}} (15)^n$$
 then $\int f d\lambda = \sum T^{(n+1)}(14)^n < 0$.
 $\int f = \sum_{n=0}^{\infty} \mathbb{1}_{\lfloor 2^{-(n+1)}, \frac{n}{2^{-n}}} (15)^n$ then $\int f d\lambda = \sum T^{(n+1)}(14)^n < 0$.
 $\int f = \sum_{n=0}^{\infty} \mathbb{1}_{\lfloor 2^{-(n+1)}, \frac{n}{2^{-n}}} (15)^n$ then $\int f d\lambda = \sum T^{(n+1)}(14)^n < 0$.
 $\int f = \int f = 0$ on a could set $\sum T^n (14)^n < 0$.
 $\int f = \int f = 0$ on a could set $\sum T^n (14)^n < 0$.
 $\int f = \int f = 0$ on a could set $\sum T^n (14)^n < 0$.
 $\int f = \int f = 0$ on a could set $\sum T^n (14)^n < 0$.
 $\int f = \int f = 0$.
 $\int f = \int f = 0$ on a could set $\int f = 0$.
 $\int f = \int f = 0$.

Exaples (Folland).

- i. $f_n = n^{-1} \chi_{(0,n)}$.
- ii. $f_n = \chi_{(n,n+1)}$.

iii.
$$f_n = n\chi_{[0,1/n]}$$
.

iv. $f_1 = \chi_{[0,1]}, f_2 = \chi_{[0,1/2]}, f_3 = \chi_{[1/2,1]}, f_4 = \chi_{[0,1/4]}, f_5 = \chi_{[1/4,1/2]},$ $f_6 = \chi_{[1/2,3/4]}, f_7 = \chi_{[3/4,1]},$ and in general, $f_n = \chi_{[j/2^k, (j+1)/2^k]}$ where $n = 2^k + j$ with $0 \le j < 2^k$.

(i)
$$f_{n} \rightarrow 0$$
 plaise, in fact uniformly, but $\int f_{n} dx = [-f_{n} 0, s_{0} \text{ not in } l'.$
(ii) $f_{n} \rightarrow 0$ plaise, but not uniformly and not in $l'.$
(iii) $f_{n} \rightarrow 0$ a.e., but not uniformly and not ic $l'.$
(iv) $f_{n} = f_{2} + f_{3} + f_{4} + f_{5} + f_{6} + f_{7} + f_{7}$

Def. o We say Mt a signecce (fi) converge is measure to f, and vide
fursef, it
$$\forall d > 0$$
, $\delta_{d}(f_{u}, f) = \mathcal{N}(\{x \in X: |f_{u}(k) - f_{u}(k)| > d) \rightarrow 0$.
O We say Mt (fin) is Cauchy in measure if $\forall d > 0$,
 $\delta_{d}(f_{u}, f_{u}) \rightarrow 0$ as $n_{f}m \rightarrow \infty$.
Examples (follow). (i) Su $\rightarrow n 0$
(ii) fu $\rightarrow n 0$
(iii) fu $\rightarrow n 0$
(iv) fu $\rightarrow n 0$
(iv